Field-resolved coherent Raman spectroscopy of high frequency vibrational resonances.

نویسندگان

  • Andrew M Moran
  • Rene A Nome
  • Norbert F Scherer
چکیده

Electric fields of coherent Raman signals are resolved with sensitivity for high-frequency vibrational resonances utilizing a four-pulse, trapezoidal beam geometry in a diffractive optic-based interferometer. Our experiments show that the heterodyne detected signal phase is stabilized for particular terms in the third-order response function by the cancellation of inter-pulse phases. The C-H stretching modes of cyclohexane and benzene are studied under two polarization conditions. The temporal profiles of signal fields for cyclohexane exhibit a low-frequency recurrence due to the interference between the signals associated with the symmetric and asymmetric C-H stretching modes. In contrast, the electronically nonresonant polarizability response of benzene gives rise to a significant broadband signal component in addition to that associated with its C-H vibrational resonance. Time-frequency shapes of the Raman signal fields are strongly dependent on the properties of the liquid and the polarizations of the laser pulses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High order symmetry structural properties of vibrational resonances using multiple-field polarization coherent anti-Stokes Raman spectroscopy microscopy.

Polarization-resolved coherent anti-Stokes Raman scattering (CARS) is usually applied to measure the depolarization ratio in solutions or evidence orientation effects in anisotropic media. We present an extensive approach based on multiple-field polarization-resolved CARS, in order to unravel the complexity of vibrational resonances up to the fourth-order symmetry, at the microscopic scale in n...

متن کامل

Stimulated coherent anti-Stokes Raman spectroscopy (CARS) resonances originate from double-slit interference of two-photon Stokes pathways.

Coherent anti-Stokes Raman spectroscopy (CARS) uses vibrational resonances to study nuclear wavepacket motions and is widely used in cell imaging and other applications. The resonances usually lie on top of a parametric component that involves no change in the molecular state and creates an undesirable background which reduces the sensitivity of the technique. Here, by examining the process fro...

متن کامل

Prolonged-excitation coherent Raman spectroscopy with spectral resolution beyond the transition linewidth using two tunable picosecond dye lasers

Received June 11, 1984; accepted September 20, 1984 A time-resolved coherent anti-Stokes Raman technique is demonstrated that yields a spectral resolution beyond the linewidth obtained in spontaneous Raman spectroscopy. Two picosecond dye lasers, independently tunable with low timing jitter, are used. The coherent material excitation is generated by long pump pulses and monitored by short delay...

متن کامل

Tunable excitation source for coherent Raman spectroscopy based on a single fiber laser.

We demonstrate a wavelength tunable optical excitation source for coherent Raman scattering (CRS) spectroscopy based on a single femtosecond fiber laser. Electrically controlled wavelength tuning of Stokes optical pulses was achieved with soliton self frequency shift in an optical fiber, and linear frequency chirping was applied to both the pump and the Stokes waves to significantly improve the...

متن کامل

Terahertz beats of vibrational modes studied by femtosecond coherent Raman spectroscopy

2014 A recently developed femtosecond coherent Raman technique allows the measurement of Fourier transform coherent Raman spectra with high-frequency differences. The simultaneous excitation of different vibrational modes with a broad-band tunable driving force leads to a strong beating of the coherent Raman probe scattering. The high time resolution of the experimental set-up allows one to mea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 110 38  شماره 

صفحات  -

تاریخ انتشار 2006